Site icon pharmaceutical daily

Immunomic Therapeutics Reports Preclinical Data on Its MCPγV-LT and Her2/Neu DNA Vaccines at the American Association for Cancer Research (AACR) Annual Meeting 2022

Both DNA Cancer Vaccines Studied Were Derived from Immunomic’s UNITE Platform

Phase 1 Study of MCPyV-LT Vaccine in Merkel Cell Carcinoma to Begin in Q2

ROCKVILLE, Md.–(BUSINESS WIRE)–#AACR22–Immunomic Therapeutics, Inc., (“ITI”), a privately-held clinical-stage biotechnology company pioneering the study of LAMP-mediated nucleic acid-based immunotherapy, announced today that the data from two posters are being presented at the American Association for Cancer Research (AACR) Annual Meeting 2022 held in New Orleans, Louisiana, from April 8-13. These posters to be presented at the AACR Meeting focus on the investigational nucleic acid platform, UNITE™ (UNiversal Intracellular Targeted Expression) for two vaccines, ITI-3000 for Merkel cell carcinoma (targeting the large T antigen of the Merkel cell polyomavirus) and Her2/Neu-LAMP DNA vaccine, both of which fuse a tumor associated antigen with lysosomal associated membrane protein 1 (LAMP-1). This proprietary lysosomal targeting technology results in enhanced antigen presentation and a balanced T cell response.

The posters are accessible on the “Posters” section of Immunomic Therapeutics’ website at: https://www.immunomix.com/media/posters/.

Highlights from the presentations are as follows:

Poster Number: 10

Title: “LAMP1 targeting of the large T antigen of Merkel cell polyomavirus elicits potent CD4+ T cell responses, tumor inhibition, and provides rationale for first-in-human trial”

Authors: Claire Buchta Rosean, PhD1; David M. Koelle, MD2; Paul Nghiem, MD, PhD3, Mohan Karkada, PhD1, Teri Heiland, PhD1

1Immunomic Therapeutics Inc., Rockville, MD, USA 2Department of Medicine/Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA 3Department of Medicine, Department of Dermatology, University of Washington, Seattle, WA, USA

Poster Number: 3

Title: Harnessing soluble CD40L to enhance anti-tumor efficacy of Her2-LAMP DNA vaccine using UNITE platform”

Authors: Wei Shen1, Renhuan Xu2, Yun-Ting Kao1, Mohan Karkada1, and Teri Heiland1

1Immunomic Therapeutics, 15010 Broschart Road, Rockville, MD 20850 2ARV-Tech, Rockville, MD 20852

“Based on these preclinical findings, we are planning a first-in-human Phase 1 open-label study to evaluate the safety, tolerability, and immunogenicity of ITI-3000 in Merkel cell carcinoma patients,” stated Dr. William Hearl, Chief Executive Officer of Immunomic Therapeutics. “This study will be our second clinical study utilizing our proprietary nucleic acid vaccine platform UNITE and underscores the potential for our platform to design and introduce novel cancer vaccines for hard-to-treat cancers.”

“We are highly encouraged by the data from the preclinical development for Her2-LAMP-sCD40L vaccine,” stated Teri Heiland, PhD, Chief Scientific Officer of Immunomic Therapeutics. “The prolonged survival noted in the murine model suggests that this novel bicistronic vaccine may be an effective strategy to promote anti-tumor efficacy in vivo for multiple HER2-expressing cancer types.”

About UNITE™

ITI’s investigational UNITE™ platform, UNiversal Intracellular Targeted Expression, leverages the ability to engineer chimeric proteins, directing antigen presenting cells to present antigens to the immune system through a targeted pathway and driving a robust immune response. UNITE vaccines are distinct in that they combine two components: nucleic acid constructs that encode a specific antigen and an endogenous Lysosomal Associated Membrane Protein (LAMP-1) sequence. The UNITE platform harnesses LAMP-1 as a means of presenting the vaccine target to the immune system, resulting in antibody production, inflammatory cytokine release, and establishing critical immunological memory, something that other vaccine approaches commonly lack. This approach could put UNITE technology at the crossroads of immunotherapies in multiple indications, including cancer, human allergy, animal health, and infectious disease. Preclinical data is currently being developed to explore whether LAMP-1 nucleic acid constructs may amplify and activate the immune response in highly immunogenic tumor types and used to create immune responses in tumor types that otherwise do not provoke an immune response.

About Immunomic Therapeutics, Inc.

Immunomic Therapeutics, Inc. (ITI) is a privately held, clinical stage biotechnology company pioneering the development of vaccines through its proprietary technology platform, UNiversal Intracellular Targeted Expression (UNITE™), which is designed to utilize the body’s natural biochemistry to develop vaccines that generate broad immune responses. UNITE has a robust history of applications in various therapeutic areas, including infectious diseases, oncology, allergy, and autoimmune diseases. ITI is primarily focused on applying the UNITE platform to oncology, where it could potentially have broad applications, including antigen-derived antibodies as biologics. The Company has built a pipeline leveraging UNITE with programs in oncology, animal health, infectious disease, and allergy. ITI maintains its headquarters in Rockville, Maryland. For more information, please visit www.immunomix.com.

Contacts

Company:
Melissa Kemp

mkemp@immunomix.com
301-968-3501

ITI Media:
Melody Carey

mcarey@rxir.com
917-322-2571

Exit mobile version